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I. MULTISTRATEGY LEARNING

From a formal viewpoint, a learning process can be
interpreted as a search through a knowledge space defined
by the representation used. States of this space are
generated by applying inference rules. The learner must
be able to infer new knowledge or a better form of
knowledge from input information and background
knowledge and it has to record the results of inference [1].
A learning process can be defined by the input
information, the background knowledge, and the goal to
be achieved. The learning process determines the type of
learning strategy or strategies to be used.

From a deeper understanding of the advantages and
limitations of learning methods based on a sole strategy,
there has been an increasing interest on multistrategy
learning systems [2]. The main features of these systems
are, on the one hand, the range of different
complementary strategies and, on the other hand, the
methods of control used to select and combine them
correctly. Their versatility and power is greater. However,
their complexity is also greater and so building an actual
integral system presents a great challenge. Since human
learning is multistrategy, research on this kind of systems
has a significant relevance to understanding it, regardless
of the concrete application [3].

This paper describes a multistrategy learning system
based on the idea that each learning strategy is the result
of certain basic inference processes which can be
integrated by working within a space with a proper
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representation, in order to learn new knowledge or to
improve existing knowledge in an iterative way. Inference
processes are assembling and transforming processes of
the structures in this space. The inference type
characterizes knowledge changes along the truth-falsity
dimension.

The input to the learning system consists of information
(examples, knowledge) that the system receives from the
environment. The learning goals specify criteria to be
fulfilled by the learned knowledge. In a specific
application of this system, this goal need to be
specialized. The integration of different inference
processes is intended to build knowledge units from data
units by generating temporary structures which try to
satisfy defined categories.

II. PERCEPTION AND REPRESENTATION IN MACHINE

LEARNING

People have the ability to analyze and understand a
situation in order to make a decision in a flexible way.
Getting a proper representation of data, information or
knowledge involved in such a situation implies the
dynamic selection of its relevant issues and their dynamic
interpretation through different methods.

One of the most relevant aspects of approaching a
machine learning problem is choosing a proper
representation. This representation not only involves the
representation formalism (rules, decision trees or neural
nets) but also the attributes used in describing the
examples or facts, and background and acquired
knowledge, as well as the features of the learning
strategies used. The objective is to get an effective
representation for the overall learning process.

In this sense, the architecture underlying the multistrategy
learning system is designed to simulate the steps followed
when people tackle a learning problem, starting from the
perception of the problem to the understanding or
experience of it.

Problem representation is the result of problem
perception. Perceived data (examples, facts, and
knowledge) flow along a filtering and scheduling process
in order to achieve a structured representation that may
have multiples uses [4].
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One challenge when a learning system tries to model
some aspects of human learning is understanding how to
give meaning to the world: which information is relevant
and the way to represent it. Problem representation must
change depending on the context and on the concepts or
ideas involved when the problem is perceived.

Perception is a process that activates concepts from
different levels of abstraction. This ensures its flexibility
since the same input data set can be perceived in different
ways depending on the context and on the perceiver’s
state. This flexibility prevents associating a fixed
representation to a perceived situation.

The proposed architecture adopts a model in which the
representation is not defined beforehand but depends on
the context and on the concepts involved in the learning
process. This architecture works with no fixed knowledge
representation but an evolving one: a structure can be
represented at a given time in one way and after that time
its representation can be modified as a result of the
evolution of the system while dealing with the problem.
That is, the learning system is able to combine perception
and representation of a learning problem in such a way
that its problem representation is conditioned by its
problem perception and at the same time the way it
perceives the problem depends on the problem
representation [5].

III. TRIPARTITE ARCHITECTURE

The architecture’s dynamics complies with perception-
representation-operation cycles, through the interaction
among three spaces, each space being responsible for one
activity in a cycle: conceptual space, working space and
operator space [6]. Information that every space requires
is passed through defined transfer structures. The
components belonging to each space can work in a
parallel way and perform its interactions through these
structures. The following subsections describe the main
elements of every space and their function.

$�� &RQFHSWV

Conceptual space represents the ideas that a human being
has beforehand when tackling a learning problem. It is
formed of concepts which include all the possible
descriptions about perceived objects and the type of these
descriptions as well as other concepts that are properties
or relations among concepts. In other words, the concepts
express all the notions about the objects involved in the
problem and about the background knowledge needed for
solving it. Conceptual space can also contain domain-
dependent knowledge.

Conceptual space of this multistrategy learning system is
based on the perception-representation philosophy used to
solve problems by analogy [7]. According to this,

concepts are characterized by their conceptual depth,
degree of activation and links to another concepts.

Objects to be perceived are the initial expressions as well
as the expressions generated throughout the evolution of
the system working to fulfil the learning goal. These
expressions are placed in the working space. Concepts
must describe the features of these expressions.
Conceptual depth reveals how easy it is to recognize a
concept in the expressions of the current problem. The
degree of activation of a concept reflects its perception
within the working space.

Concepts may have inference processes associated to
them. The activation of concepts promotes the work of the
inference processes or operators in order to change the
working space contents. The degree of activation of a
concept represents the number of operations of its class
that can be performed over expressions in the working
space. The activation of concepts decreases when the
operations associated to them have been performed.

The learning process finishes when learning goals have
been achieved or when there are no activated concepts in
the conceptual space.
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Working space is defined as a recipient of expressions
(examples and knowledge) represented by logic formulas.
The application of inference operators over this space
allows the transformation of knowledge by creating new
expressions or updating existing ones. System evolution
determines that working space can contain structures with
different levels of complexity.

The state of the working space at every moment reflects
how the system evolves. This space can be represented by
a graph made up of nodes containing the generated
expressions joined by links labeled with the type of
binding operator. One expression can be included in
several expressions of different levels of complexity.
Working space may have two classes of expressions:
virtual and real expressions. Virtual expressions are
generated by the action of inference operators and they
are candidates to be real.

Every expression has associated to it a parameter
indicating its importance within the working context
regarding the depth of the concepts perceived. When an
operator proposes a new expression or virtual expression
to the working space, the working space decides, based on
the importance of the expression, whether this expression
is to be built and thus it becomes a real expression. This
parameter plays an essential role by trying to prevent a
disordered increase of knowledge generated by the
inference processes. It represents a mechanism of
dynamic weighing of the expressions, which evaluates
each expression according to the system’s learning goals.
The building of expressions in the working space



promotes the updating of concept activation within the
conceptual space.
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The integration of different learning methods requires
characterizing them through common parameters in order
to establish one sole representation of input information
and of inference results. This architecture, instead of
integrating learning strategies (induction, deduction,
analogy, ...) at a macro level, performs the integration of
different inference processes (specialization,
generalization, abstraction, ...) which form strategies.

Inference operators are devoted to the part of operation
belonging to the tripartite cycle performed by the system.
The function of this space is to modify the structures of
the working space according to the activated concepts of
the conceptual space in order to get new knowledge or a
better form of existing knowledge. This space contains
different classes of inference operators. Besides, it
contains operators that seek certain type of expressions
and operators that compute the parameters associated to
expressions in the working space. They are seeker
operators and computer operators, respectively.

Every operator takes one or more expressions, according
to their importance, from the working space and proposes
the resulting or virtual new expression to the working
space. The job of every operator is to get a better state of
the working space by generating expressions that may be
the solutions to the proposed learning problem. The
number of instances of one operator class depends on the
activation coming from the concepts of the conceptual
space. Operators work in the different cycles of the
learning process in the same way. It is not necessary to
modify its behavior over the expressions in the working
space in spite of their increasing complexity.

Every inference operator can operate regardless of the
remaining ones; it is only sufficient that its application
conditions be satisfied. Thus, it is possible to search new
expressions in a parallel way. For instance, whereas an
inductive inference process generalizes a set of examples
to produce a class description, a deductive inference
process can find that this description is the premise of one
rule in the conceptual space.

However, it is necessary to set restrictions in the
application order of the inference processes in order to
ensure the very best system behavior in using resources.
These criteria try to avoid the simultaneous working of
unnecessary search processes, on behalf of other
processes that are more efficient in the knowledge
creation, or the removal by a process of the expressions
previously produced by another process. Concepts,
through the conceptual depth, control the order of
different inference operations. The lower conceptual
depth of a concept, the higher priority of its associated
operators. The operators delayed become active in later
learning cycles.

Most multistrategy systems have integrated learning
strategies from a cooperative or competitive viewpoint.
The cooperative approach is directed to the selection of
the best learner whereas the competitive approach aims to
get the best global result by using all the individual
results.

The developed architecture fulfills both of these
approaches. The system is cooperative since all the
strategies contribute to a common working space and
some of these strategies reuse the structures generated by
other ones. It is competitive since the working space
builds a real structure proposed by an operator whenever
this new structure is more important than other ones
previously created or those ones created at the same time
by other inferential operators.

IV. LEARNING THE DESCRIPTION OF A CLASS OF

EXAMPLES

Table 1 shows a set of positive and negative examples of
a class. The goal is to learn the class description from the
examples provided. The examples are described by
attribute-value pairs, called selectors [8].

7DEOH��. A sample of positive and negative examples of a class.

example at1 at2 at3 class
1 a x r +
2 a y r +
3 b y r +
4 b y s +
5 a y s -
6 a z r -
7 a z s -

When people approach a supervised learning problem,
like the one of the table, in a manual way, they start
looking at the values of the different attributes describing
positive examples. Once these selectors are known, they
verify whether some of these are only contained within
the positive examples -the objective is to find, as soon as
possible, the consistent selectors-. When consistent
selectors are found, the next step is to check whether these
selectors are present in all of the positive examples -thus,
the expressions would then be consistent and complete-.
When selectors are incomplete, it is necessary to find
other consistent selectors and to perform the logic product
among them (deductive specialization).

If there are no consistent selectors, the most consistent
ones are chosen and the logic product is performed among
them. This process is repeated until a consistent
expression is found. Finally, this consistent expression has
to be completed (inductive generalization).

The application of the tripartite architecture to this
learning problem implies the comprehension of  every
term and its proper modification. Concepts must describe



the features of an expression, which may be: consistent,
complete, general, specific, and solution. Initial
expressions are the selectors of the target class.
Conceptual space has to take both of them into account by
setting up the set of concepts and relations for
representing them.

A few ideas underlie a supervised learning problem; they
symbolize the strategy for solving it:

1. If an expression is too general, then it must be
specialized

2. If an expression is too specific, then it must be
generalized

3. If a consistent and complete expression is found, then
this expression is a solution of the problem

Therefore, the conceptual space must contain the General,
Specific and Solution concepts. The General and Specific
concepts are related by unidirectional links labeled with
the Complete and Consistent concepts. These relations
represent the two first strategic ideas.

The Complete and Consistent concepts are easier to
perceive than the Specific or General concepts and thus
their conceptual depth is lower. This means that a
consistent expression is perceived with greater ease or
more quickly than a general expression. In the figure,
selectors x and b are consistent selectors for the target
class.

The Specific concept is activated whenever there exist
expressions capable of being specialized, and are
therefore capable of becoming consistent expressions. In
the shown sample, selectors a, y, r, and s may be
specialized in order to obtain consistent expressions. The
same can be said about the General concept. The degree
of activation of these concepts represents the number of
operations of their class that can be performed over
expressions in the working space. The activation of the
Specific concept would be:

being n the number of expressions to be specialized and k
the number of expressions whose consistency value is
below a certain threshold. In this case, the activation of
the Specific concept is 6.

The searching algorithm of class descriptions is an
algorithm of simultaneous covering [9]: it selects the most
general descriptions without removing covered examples.
This algorithm chooses among alternative attribute-value
pairs by comparing the subsets of data they cover.
Besides, this approach allows inference operators to work
in a parallel way without any synchronization. The search
begins with the most general description: starting from the
empty description, the following descriptions are obtained
by specialization. It is a beam search that retains a defined
number of candidate descriptions in every step: those with

the highest consistency and completeness values.
Description generation is not guided by examples of the
sample. Descriptions are generated based only on the
syntax of the description representation.
The Specific concept is associated with deductive and
inductive specialization operators, and the General
concept is associated with deductive and inductive
generalization operators. The activation of the Specific
concept triggers the action of specialization operators.
The number of instances of deductive specialization
operator is 6. Every operator instance takes two
expressions (i.e.: y and r) and proposes a new or virtual
expression (i.e.: y ∧ r).

Figure 1 shows a simplified schema of the tripartite
architecture for a supervised learning problem. The
different expressions of the working space are formed
from simpler expressions joined by logic connectives
introduced by the action of specialization and
generalization operators.

)LJXUH��. A partial framework of the tripartite architecture for
supervised learning.

The activation of the Complete and Consistent concepts
reflects the presence of expressions of these classes in the
working space. These concepts do not have any
associated inference processes. Their function is to allow
the transfer of activation between the General and
Specific concepts. The selectors b and x activate the
Consistent concept and thus activation from the Specific
concept is transferred to the General concept. This latter
concept triggers the action of generalization operators that
generate the expression b ∨ x.

The working space evaluates the importance of created
expressions and it decides whether these expressions are
to be built. A consistent expression is more important than
a specific expression: the consistent expression involves a
concept with low conceptual depth (Consistent) and
allows specialization operators to work with other less
important expressions since it is impossible to keep on
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specializing the consistent one. The importance, for this
learning goal, also considers the level of generality of a
description in relation to the remaining ones. If the
examples covered by a virtual description are a subset of
the examples covered by a real description, the former
one will not be built. If, on the contrary, the virtual
description is more general than other real description, the
working space will build the former and remove the latter.
Figure 2 shows the evolution of the working space for the
sample of Table 1 and the highlighted description is the
complete and consistent description found by the system.
The system has employed two cycles of perception-
representation-operation for learning this description.

)LJXUH��. The description found by the learning system.

The value of the different parameters involved in this
architecture are fixed in an experimental way. Their
computation is out of the scope of this paper.

V. CONCLUSIONS

This paper has outlined the features of the architecture of
a multistrategy learning system trying to model some
aspects of human learning. The architecture of the system
integrates the different inference processes in a
competitive and cooperative way. Control strategy is
distributed among the three parts forming the system.
There is no central part governing system performance.
The interaction among parts has been solved in an easy
way.

The system learns by performing an infinite running cycle
that consists of three stages: conceptual space, operator
space and working space. When the operation of every
space is small, a good simulation of their concurrence is
obtained and a greater analogy with the process of
perception and representation performed by people.

All of this reveals the similarity between the system and
the way we think human beings solve problems of
supervised learning: they use several reasoning lines and
make a decision depending on the perceived conditions of
the problem. If all the reasoning lines lead to the same
conclusion, it is highly probable that such a conclusion be
right. On the contrary, if the lines lead to contradictory
conclusions and all the lines have the same power, it will
be very difficult to make a conclusive decision. Although
a human being could trigger his/her reasoning capabilities
in a parallel way, the problem conditions determine which
lines are more promising and which lines can be delayed.
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